Tansu Daylan

Education

- 2018, Ph.D. in Physics, Harvard University, Cambridge, MA, US
- 2015, M.A. in Physics, Harvard University, Cambridge, MA, US
- 2013, B.S. in Physics (double major), Middle East Technical University (METU), Ankara, Turkey
- 2012, B.S. in Electrical and Electronics Engineering, METU, Ankara, Turkey
- 2008, Robert College, Istanbul, Turkey

Positions

- Since June 2021, Visiting Postdoctoral Associate, Princeton University, Princeton, NJ, US
- Since June 2021, TESS Postdoctoral Associate, MIT, Cambridge, MA, US
- 2018-2021, Postdoctoral Kavli Fellow, MIT, Cambridge, MA, US
- 2013-2018, Research/Teaching Fellow, Harvard University, Cambridge, MA, US
- 2011-2013, Teaching Assistant, METU, Ankara, Turkey

Research Statement

I have had the exciting opportunity to make significant contributions in a broad range of research fields, i.e., exoplanets, cosmology, astro-particle physics, and astro-statistics.

Record of my research output: NASA ADS, Google Scholar, and ORCID

Authored 60 research publications, number of citations: 1660, h-index: 20 (retrieved from NASA ADS)

PhD Thesis: A Transdimensional Perspective on Dark Matter (2018), advisor: Douglas P. Finkbeiner

Selected Research Achievements

- Led the discovery of four small exoplanets transiting a bright, Sun-like star, HD 108236 (Daylan+2021),
- Significantly contributed to the discovery or characterization of more than 40 exoplanets (e.g., Daylan+2019),
- Co-developed a widely-used inference framework to model stars and exoplanets (Günther&Daylan2020),
- Led the group vetting of the NASA TESS mission, which has delivered more than 2100 exoplanet candidates,
- Built a method to probe the small-scale structure of dark matter using gravitational lensing to test the LCDM model (Daylan+2018),
- Constructed a novel statistical method to perform transdimensional inference (Daylan+2017),
- Revealed a potential link between the anomalous gamma-ray emission from the inner galaxy and WIMP annihilation (Daylan+2016).

Awards, Honors and Achievements

- Selected into the the NASA FDL research team (2020)
- MIT Kavli Fellowship (2018)
- MIT Translational Fellowship (2018)
- AAS Chambliss Honorable Mention (2015)
- WorldQuant Fellowship (2014)
- Harvard Purcell Fellowship (2013)
- Selected among the young researchers to attend the Lindau Nobel Laureates Meeting (2012)
- Featured by the Scientific American in the "30 under 30" list (2012)
- Ranked 10th among 1.5 million participants (i.e., 99.999th percentile) in the National University Entrance Exam (2008)
- Turkish Republic Prime Ministry Great Achievement Scholarship (2008-2012)
- Turkish Education Foundation Superior Success Scholarship (2008-2012)
- Fen Bilimleri Fellowship (2008)
- Highest GPA in the class (2008 and 2009)
- Winner of Bilkent University Undergraduate Physics Research Competition (2013)
- Honorable Mention Award for EEE graduation project of autonomous construction robot design (2012)

Selected awarded research grants as PI

- \$69,970.71, Hunting For Black Holes With TESS, 2021, TESS Guest Investigator Program, Cycle 4, ID G04190.
- \$5,000, Robust Census of Long-Period Solar System and Interstellar Objects with LSST, 2021-39, LSSTC ES Program
- \$5,000, A Cloud-accelerated hunt for black holes with TESS, 2001, Azure cloud computing, CSML, Princeton University

Awarded telescope resources as PI

- 2-minute cadence targets. Mapping Star Spots Using TESS, TESS Guest Investigator (GI) Program, Cycle 4, ID G04206.
- 2-minute cadence targets. Searching For Compact Objects With Stellar Companions Using TESS, TESS GI, Cycle 3, ID G03254.
- 1.5 nights. Revealing the dynamical history of an exceptional multiplanetary system with small transiting planets and a bright host, Magellan Clay/PFS, 2021A.
- 1 night. Probing the spin-orbit alignment of a rich and compact multiplanetary system TOI-1233, Magellan Clay/PFS, 2022A.

Selected awarded grants as non-PI

- \$492,467 Planet Formation Revealed by a Uniform Analysis of all Giant Planets, 2021, NASA XRP, 21-XRP21-0135, Pl: Quinn
- \$67,000, Disintegrating Rocky Bodies Transiting White Dwarfs: The Key To Understanding Exoplanet Compositions, 2021, TESS Guest Investigator Program, Cycle 4, ID G04200, PI: Vanderburg.
- \$50,000, A Systematic Study To Characterize Rapid Optical Variability Of Agn And Search For Quasi-Periodic Oscillations, 2021, TESS Guest Investigator Program, Cycle 4, ID G04215, PI: Pasham.
- \$50,000, A Systematic Study Of Tess Orbital Phase Curves, 2021, TESS Guest Investigator Program, Cycle 4, ID G04096, PI: Shporer.
- Thermal Emission from the First Planet Transiting a White Dwarf, 2021, JWST Proposal, Cycle 1, ID 2507, PI: Vanderburg.
- Leveraging The Synergy Between TESS And Speculoos: Hunting For Exoplanets Around The Nearest Late M Dwarfs, 2020, TESS Guest Investigator Program, Cycle 3, ID G03279, PI: Guenther.
- \$44,999.55, Disintegrating Rocky Bodies Transiting White Dwarfs: The Key To Understanding Exoplanet Compositions, 2020, TESS Guest Investigator Program, Cycle 3, ID G03207, PI: Vanderburg.
- \$50,000, A Systematic Study Of TESS Orbital Phase Curves, 2020, TESS Guest Investigator Program, Cycle 3, ID G03232, PI: Shporer.
- \$43,000, Disintegrating Rocky Bodies Transiting White Dwarfs: The Key To Understanding Exoplanet Compositions, 2019, TESS Guest Investigator Program, Cycle 2, ID G022077, PI: Vanderburg.
- \$89,000, Atmospheric characterization of two temperate mini-Neptunes formed in the same protoplanetary nebula, 2019, HST Proposal, Cycle 27, ID 15814, Pl: Mikal-Evans.

Selected teaching experience

- Spring 2021, MIT Kaufman Teaching Certificate Program, MIT, Cambridge, MA, US
- Spring 2021, Guest Lecturer, Spec Seminar: Planetary Science, MIT, Cambridge, MA, US
- Fall 2020, Guest Lecturer, Selected Topics in Graduate Physics, 8.398, MIT, Cambridge, MA, US
- Summer 2019, Lecturer, "Quantum to Cosmos: Ideas and Applications", Research summer school, Istanbul, Turkey
- Spring 2019, Guest Lecturer, Artificial Intelligence for TESS Applications, 12.S680, MIT, Cambridge, MA, US
- Spring 2019, Guest Lecturer, Undergraduate Cosmology, Astro 130, Harvard University, Cambridge, MA, US
- Fall 2016, Teaching Fellow, Graduate Cosmology, Physics 212, Harvard University, Cambridge, MA, US
- Spring 2015, Teaching Fellow, The Energetic Universe, SPU 19, Harvard University, Cambridge, MA, US
- Spring 2013, Fall 2012, Spring 2012, Teaching Assistant, Modern Physics, PHYS207, METU, Ankara, Turkey

Professional activities

- President (2020-2021) and Human Affairs Chair (2019-2020) of the MIT Postdoctoral Association
- TESS Science Office exoplanet vetting lead (since 2018)
- NOIRLab Telescope Allocation Committee member 2020A, 2020B, 2021A, and 2021B
- Reviewer for NASA XRP, HST GO, NASA FDL and NASA FINESST proposals
- Referee for the AAS journals AJ, ApJ, and ApJS
- Session Chair and/or Organizer in AAS235, AAS237, and TESS Science Conference II
- Editorial board member for the Turkish Journal of Physics (since 2019)
- LOC member for TESS Science Conference I and "Gravitational Waves: New Challenges and Opportunities" (2019)
- Organizer of the MIT Exoplanet Journal Club (2018-2020)
- Member of the science council for the East Anatolian Observatory (since 2019)
- Research mentor for the Harvard-MIT Science Research Mentoring Program (2019-2020)
- Mentor, American Physical Society (APS) National Mentoring Community (2020-), MIT Mentor Advocate Partnership (2018-2019)
- Observing experience with DECam on the 4m Blanco Telescope at CTIO and PFS on the 6.5m Clay (Magellan II) Telescope at LCO.
- Extensive data analysis (machine learning and Bayesian inference) experience with astrophysical datasets collected by space and ground-based missions such as Fermi-LAT, Chandra, HST, SDSS, TESS, Kepler, and AMS-02.

Selected Software Developed

- **Probabilistic Cataloger** (PCAT), Daylan et al. 2017, Daylan et al. 2018, a transdimensional, hierarchical, and Bayesian framework to sample from the posterior probability distribution of a metamodel, i.e., union of models with different dimensionality, https://github.com/tdaylan/pcat
- Allesfitter, Günther & Daylan, 2019, widely used software to model exoplanets and stars in time-series data, https://www.allesfitter.com

Publications

Peer-reviewed papers (in review or published)

Lead author

- 1. Daylan et al. TESS discovery of a super-Earth and three sub-Neptunes hosted by the bright, Sun-like star HD 108236
- AJ, 161:85, 2021, doi:10.3847/1538-3881/abd73e, arXiv:2004.11314 2. Daylan et al. TESS observations of the WASP-121 b phase curve
- AJ, 161:131, 2021, doi:10.3847/1538-3881/abd8d2, arXiv:1909.03000 3. Daylan et al. The Small-scale Structure in Strongly Lensed Systems via Transdimensional Inference

ApJ, 854:141, 2018, doi:10.3847/1538-4357/aaaa1e, arXiv:1706.06111 4. Daylan et al. Inference of Unresolved Point Sources at High Galactic Latitudes Using Probabilistic Catalogs

- ApJ, 839:4, 2017, doi:10.3847/1538-4357/aa679e, arXiv:1607.04637
- 5. Daylan et al. The characterization of the gamma-ray signal from the central Milky Way: A case for annihilating dark matter Physics of the Dark Universe, 12:1-23, 2016, doi:10.1016/j.dark.2015.12.005, arXiv:1402.6703

Second or third author

- 6. Kunimoto, Daylan, et al. The TESS Faint Star Search: 1,617 TOIs from the TESS Primary Mission
- Submitted, 2021, arXiv:2112.02176 7. Günther and Daylan. Allesfitter: Flexible Star and Exoplanet Inference From Photometry and Radial Velocity ApJS, 254:13, 2021, doi:10.3847/1538-4365/abe70e, arXiv:2003.14371
- 8. Wong, Shporer, Daylan, et al. Systematic Phase Curve Study of Known Transiting Systems from Year 1 of the TESS Mission AJ, 160:155, 2020, doi:10.3847/1538-3881/ababad, arXiv:2003.06407
- 9. Badenas-Agusti, Günther, Daylan, et al. HD 191939: Three Sub-Neptunes Transiting a Sun-like Star Only 54 pc Away AJ, 160 113, 2020, doi:10.3847/1538-3881/aba0b5, arXiv:2002.03958
- 10. Feder, Portillo, Daylan, et al. Multiband Probabilistic Cataloging: A Joint Fitting Approach to Point Source Detection and Deblending AJ, 159:163, 2020, doi:10.3847/1538-3881/ab74cf, arXiv:1907.04929
- 11. Portillo, Lee, Daylan, et al. Improved Point-source Detection in Crowded Fields Using Probabilistic Cataloging AJ, 154:132, 2017, doi:10.3847/1538-3881/aa8565, arXiv:1703.01303
- 12. Butler, Feder, Daylan, et al. Measurement of the Relativistic Sunyaev-Zeldovich Corrections in RX J1347.5-1145 Submitted, 2021, arXiv:2110.13932

Core author (i.e., significant contribution to analyses, figures, or sections in addition to editing of the manuscripts.) 13. Smith et al. GRB 191016A: A Long Gamma-Ray Burst Detected by TESS ApJ, 911:1, 2021, doi:10.3847/1538-4357/abe6a2, arXiv:2102.11295

- 14. Crossfield et al. Phase Curves of Hot Neptune LTT 9779b Suggest a High-Metallicity Atmosphere ApJL, 903:L7, 2020, doi:10.3847/2041-8213/abbc71, arXiv:2010.12745
- 15. Dragomir et al. Spitzer Reveals Evidence of Molecular Absorption in the Atmosphere of the Hot Neptune LTT 9779b ApJL, 903:L6, 2020, doi:10.3847/2041-8213/abbc70, arXiv:2010.12744
- 16. Vanderburg et al. A giant planet candidate transiting a white dwarf
- Nature, 585, 363-367, 2020, doi:10.1038/s41586-020-2713-y, arXiv:2009.07282 17. Günther et al. Complex Modulation of Rapidly Rotating Young M Dwarfs: Adding Pieces to the Puzzle

Submitted, 2020, arXiv:2008.11681

18. Kane et al. Transits of Known Planets Orbiting a Naked-Eye Star

AJ, 160:129, 2020, doi:10.3847/1538-3881/aba835, arXiv:2007.10995

- 19. Basturk et al. A holistic and probabilistic approach to the ground-based and spaceborne data of HAT-P-19 system MNRAS, 496:4174, 2020, doi:10.1093/mnras/staa1758, arXiv:1911.07903
- 20. Pepper et al. TESS Reveals HD 118203b to be a Transiting Planet
- AJ, 159:243, 2020, doi:10.3847/1538-3881/ab84f2, arXiv:1911.05150 21. Wong et al. Exploring the atmospheric dynamics of the extreme ultra-hot Jupiter KELT-9b using TESS photometry

AJ, 160:88, 2019, doi:10.3847/1538-3881/aba2cb, arXiv:1910.01607

- 22. Yu et al. Identifying Exoplanets with Deep Learning III: Automated Triage and Vetting of TESS Candidates
 AJ, 158:25, 2019, doi:10.3847/1538-3881/ab21d6, arXiv:1904.02726

 23. Fausnaugh et al. Early Time Light Curves of 18 Bright Type Ia Supernovae Observed with TESS
- ApJ, 908:51, 2021, doi: 10.3847/1538-4357/abcd42, arXiv:1904.02171
- 24. Günther et al. A Super-Earth and two sub-Neptunes transiting the bright, nearby, and quiet M-dwarf TOI-270 Nature Astronomy, page 420, 2019, doi:10.1038/s41550-019-0845-5, arXiv:1903.06107

25. Bouma et al. WASP-4b Arrived Early for the TESS Mission.

AJ, 157:217, 2019, doi:10.3847/1538-3881/ab189f arXiv:1903.02573

26. Günther et al. Stellar Flares from the First Tess Data Release: Ex	ploring a New Sample of M-dwarfs 9:60, 2020, doi:10.3847/1538-3881/ab5d3a, arXiv:1901.00443
27. Shporer et al. TESS Full Orbital Phase Curve of the WASP-18b Sy	vstem
	:178, 2019, doi:10.3847/1538-3881/ab0f96, arXiv:1811.06020
28. Schlafly et al. The DECam Plane Survey: Optical Photometry of	wo Billion Objects in the Southern Galactic Plane
ApJS, 23	4:39, 2018, doi:10.3847/1538-4365/aaa3e2, arXiv:1710.01309
Collaborating author (i.e., based on research work for a collabo	
29. Silverstein et al. The LHS 1678 System: Two Earth-Sized Transitir	• • •
Near the Convective Boundary at 20 pc	Accepted, AJ, 2021, arXiv:2110.12079
30. Huber et al. A 20-Second Cadence View of Solar-Type Stars and	•••••••
and a Re-characterization of pi Men c	Accepted, AJ, 2021, arXiv:2108.09109
31. Trifonov et al. A pair of warm giant planets near the 2:1 mean m	otion resonance around the K-dwarf star TOI-2202
	Accepted, AJ, 2021, arXiv:2108.05323
32. Wells et al. A large sub-Neptune transiting the thick-disk M4V T	OI-2406
A&A, 653, A97	, 2021, doi:10.1051/0004-6361/202141277, arXiv:2107.14125
33. Wong et al. Visible-light Phase Curves from the Second Year of	the TESS Primary Mission
	:127, 2021, doi:10.3847/1538-3881/ac0c7d, arXiv:2106.02610
34. Burt et al. TOI-1231 b: A Temperate, Neptune-Sized Planet Trans	
	2:87 , 2021, doi:10.3847/1538-3881/ac0432, arXiv:2105.08077
35. Addison et al. TOI-1431b/MASCARA-5b: A Highly Irradiated Ultr	
Exoplanet Host Stars	Accepted, AJ, 2021, arXiv:2104.12078
36. Guerrero et al. The TESS Objects of Interest Catalog from the TE	
	54:39, 2021, doi:10.3847/1538-4365/abefe1, arXiv:2103.12538
عربهم 37. Hobson et al. A transiting warm giant planet around the young	
	:235, 2021, doi:10.3847/1538-3881/abeaa1, arXiv:2103.02685
38. Osborn et al. A hot mini-Neptune in the radius valley orbiting so	
	42-4857, 2021, doi:10.1093/mnras/stab182, arXiv:2101.04745
39. Powell et al. TIC 168789840: A Sextuply-Eclipsing Sextuple Star	•
	:162, 2021, doi:10.3847/1538-3881/abddb5, arXiv:2101.03433
40. Zhou et al. Two young planetary systems around field stars wit	
	61:2, 2020, doi:10.3847/1538-3881/abba22, arXiv:2011.13349
41. Dreizler et al. The CARMENES search for exoplanets around M dw	
	, A127, doi:10.1051/0004-6361/202038016, arXiv:2011.01716
42. Dai et al. TKS III: A Stellar Obliquity Measurement of TOI-1726 c	
	:193, 2020, doi:10.3847/1538-3881/abb3bd, arXiv:2008.12397
43. Burt et al. TOI-824 b: A New Planet on the Lower Edge of the Ho	•
	:153, 2020, doi:10.3847/1538-3881/abac0c, arXiv:2008.11732
44. Ikwut-Ukwa et al. TheK2&TESS Synergy I:Updated Ephemerides	
	:209, 2020, doi:10.3847/1538-3881/aba964, arXiv:2007.00678
45. Dalba et al. The TESS-Keck Survey. I. A Warm Sub-Saturn-mass I	lanet and a Caution about Stray Light in TESS Cameras
AJ, 159	:241, 2020, doi:10.3847/1538-3881/ab84e3, arXiv:2003.10451
46. Addison et al. TOI-257b (HD 19916b): A Warm sub-Saturn on a	Moderately Eccentric Orbit Around an Evolved F-type Star
MNRAS, 502, 3, 370	4-3722, 2021, doi:10.1093/mnras/staa3960, arXiv:2001.07345
47. Gilbert et al. The First Habitable Zone Earth-sized Planet from TI	ESS. I: Validation of the TOI-700 System
AJ, 160	:116, 2020, doi:10.3847/1538-3881/aba4b2, arXiv:2001.00952
48. Shporer et al. GJ 1252 b: A 1.2 R⣠planet transiting an M3-dwar	
· · · ·	0:L7, 2020, doi:10.3847/2041-8213/ab7020, arXiv:1912.05556
49. Jordan et al. TOI-677 b: A Warm Jupiter (P=11.2d) on an eccentr	
	:145, 2020, doi:10.3847/1538-3881/ab6f67, arXiv:1911.05574
50. Dawson et al. TOI-216b and TOI-216c: Two warm, large exoplan	
• •	8:65, 2019, doi:10.3847/1538-3881/ab24ba, arXiv:1904.11852
51. Espinoza et al. HD 213885b: A transiting 1-day-period super-Ea	
	91:2982, 2020, doi:10.1093/mnras/stz3150, arXiv:1903.07694
52. Rodriguez et al. An Eccentric Massive Jupiter Orbiting a Subgia	
	191, 2019, doi:10.3847/1538-3881/ab11d9, arXiv:1901.09950
Survey Satenite run Frame intages AJ, 157	1, 201, aurio. 304/11330-3001/aurio3, arviv. 1301.03330

Proceedings

54.	54. Johnson, Sundaresan, Daylan, et al. RotNet: Fast and Scalable Estimation of Stellar Rotation Periods Using Convolutional Neural		
	Networks	NeurIPS 2020, Vancouver, Canada, 2020, arXiv:2012.01985	
55.	5. S. Schael et al. Precision measurements of the electron spectrum and the positron spectrum with AMS		
		ICRC 2013, Rio De Janeiro, Brazil, 2013	
56. J. Casaus et al. Determination of the positron anisotropy with AMS			
		ICRC 2013, Rio De Janeiro, Brazil, 2013	
57. V. Choutko et al. Precision Measurement of the Cosmic Ray Helium Flux with AMS Experiment			
		ICRC 2013, Rio De Janeiro, Brazil, 2013	
58. S. Haino et al. Precision measurement of the proton flux with AMS			
		ICRC 2013, Rio De Janeiro, Brazil, 2013	
59.	59. A. Oliva et al. Precision Measurement of the Cosmic Ray Boron-to-Carbon Ratio with AMS		
		ICRC 2013, Rio De Janeiro, Brazil, 2013	
60. B. Bertucci et al. Precision measurement of the e^+ + e^- spectrum with AMS			
		ICRC 2013, Rio De Janeiro, Brazil, 2013	

Tansu Daylan's Extended CV (Appendix)

Research mentoring experience

- Graduate student: Mariona Badenas-Agusti (MIT), Emma Chickles (Wellesley \rightarrow MIT), Lindsey Gordon(Wellesley \rightarrow UMinnesota)
- Undergraduate student: Richard Feder-Staehle (Harvard \rightarrow Caltech)
- High school research interns: Rohan Subramani, Ashley Davidson, Kartik Pinglé, and Jasmine Wright

Affiliations

- Junior Member, International Astronomical Union (IAU), since 2020
- American Physical Society, since 2016
- American Astronomical Society, since 2014
- Sigma χ l Society, since 2014
- TESS Atmospheric Characterization Working Group, since 2019
- TESS Follow-up Working Group, since 2019
- TESS Objects of Interest Working Group, since 2018
- Associate member, CERN, 2011-2013
- AMS-02 Collaboration, 2011-2013

Selected Invited Seminars and Colloquia

- A deep survey of transiting exoplanets in the TESS Full Frame Images, Caltech/JPL, Remote, 30 August 2021
- A Compute-Intensive Exploration and Characterization of Our Celestial Wonders: Dark Matter and Exoplanets, Washington University, Remote, 27 April 2021
- A Compute-Intensive Exploration and Characterization of Our Celestial Wonders: Dark Matter and Exoplanets, University of Florida, Remote, 30 March 2021
- Discovery of the HD 108236 multiplanetary system with a bright Sun-like star, Ohio State University, Remote, 26 January 2021
- Taking a census of dark matter substructure via transdimensional gravitational imaging, Stanford University, Remote, 15 December 2020
- Recharacterization of the atmosphere of WASP-121b, University of Florida, Remote, 9 April 2020
- Hot Jupiters and the TESS phase curve of WASP-121b, Yale University, New Haven CT, 19 November 2019
- TESS phase curve of WASP-121b, University of Arizona, Tucson AZ, 30 October 2019
- Probing the small-scale structure in strong lenses with PCAT, Caltech/JPL, Pasadena CA, 4 March 2019
- Inner Milky Way Gamma Ray Excess, Cape Cod Astronomical Society, South Yarmouth MA, 5 January 2017

Selected Contributed Talks

- TOI 1233: A quartet of exoplanets discovered by TESS, TESS Science Meeting 20, Remote, 11 June 2020
- TESS observations of the WASP-121b phase curve, AAS235, Honolulu HI, 5 January 2020
- TESS phase curve of WASP-121b, BAESM, Cambridge MA, 5 April 2019
- Recharacterization of previously known exoplanets in multi-sector TESS data, AAS233, Seattle WA, 6-10 January 2019
- PSF fitting with the TESS data, TESS Science Meeting 15, Cambridge MA, 6 August 2018
- Probing faint gamma-ray point sources in the inner Milky Way using PCAT, TeVPA2017, Columbus OH, 09 August 2017
- Probing the GeV Excess using PCAT, IDM2016, Sheffield UK, 18 July 2016
- Inference of Dim Gamma-Ray Point Sources Using PCAT, Dark Matter and Gamma Rays 2015, Obergurgl Austria, 09 December 2015
- Contribution of Dark Matter annihilations to the low-redshift metagalactic ionization rate, DPF2015, Ann Arbor MI, 06 August 2015
- Can MSPs account for the gamma-ray excess in the inner Milky Way?, EWASS2015, Tenerife Spain, 25 June 2015
- Scrutinizing the Diffuse Gamma-Ray Emission in the Inner Galaxy, TeVPA2014, Amsterdam Netherlands, 26 June 2014
- The Characterization of the Gamma-Ray Signal from the Central Milky Way, Fermi Summer School at University of Delaware, Lewes DE, 31 May 2014
- Anomalous Gamma-Ray Emission from the Inner Galaxy, Harvard University, Cambridge MA, 07 May 2014
- Photon Reconstruction In Calorimetric Mode, AMS Collaboration Meeting at CERN, Geneva Switzerland, 14 February 2013

Selected Poster Presentations

- Recharacterization of previously known exoplanets in multi-sector TESS data, Kepler Science Conference V, Glendale, CA, 4-8 March 2019
- Scrutinizing the unresolved x-ray background in the CDFS field via transdimensional sampling, the 16th AAS HEAD Meeting, Sun Valley, ID, 20-24 August 2017
- Inference of Dim Gamma-Ray Point Sources Using Probabilistic Catalogs, 6th Fermi Symposium, Arlington, VA, 08 November 2015
- Contribution of GeV Scale Dark Matter Annihilations to the Cosmic Ultraviolet Background, the 225^th AAS Meeting, Seattle, WA, 06 January 2015
- GeV excess electrons upscattering the CMB: a possible resolution to the "Photon Underproduction Crisis", 5th Fermi Symposium, Nagoya, Japan, 20 October 2014
- The Characterization of the Gamma-Ray Signal from the Central Milky Way, Sackler Cenference, Cambridge, MA, 19 May 2014

Selected Science Outreach

- Lecturer, The Project Science Voyagers, (2016-2018, addressed \sim 30,000 high school students)

Tansu Daylan's Extended CV (Appendix)

- Lecturer, Turkish Ministry of Education e-conference, (2018, addressed \sim 9,000 high school students)
- Lecturer, Astronomy in Schools (addressed ${\sim}1500$ high school students)
- Mentor, First Lego League
- Over 10 invited appearances on science outreach podcasts and interviews
- Over 100 science outreach talks to universities and high schools
- Author, Science & Utopia and Tree of Evolution
- Contributor, Cambridge Explores the Universe, CfA, Cambridge, April 2016
- Contributor, Ask a Scientist, Cambridge Science Festival, Cambridge, April 2016
- Contributor, Sky & Space Day, Cambridge Science Festival, Cambridge, April 2015
- Lecturer, Beacon Hill Seminars, Cambridge, MA, (2014-2016)
- Lecturer, Science In The News Public Science Lectures, Cambridge, MA, (2014-2016)
- Author, Harvard Science In The News, 2014
- Lecturer, "There is a Scientist In My Classroom" Project, Cambridge, MA, 2013
- Organizer, Mobile CERN exhibition, METU, Ankara, Turkey, 2012

Coding

- Unix-like operating systems, Python, IDL, C++, MATLAB, Mathematica
- TensorFlow, Numpy, Numba, PyCUDA
- Relational databases, SQL
- Jekyll, HTML5, JavaScript, CSS

Selected Workshops, Schools and Conferences Attended

- January 2020, Inclusive Teaching Workshop, Cambridge, MA
- 27 May 06 June 2014, Fermi Summer School 2014, Lewes, DE
- 28 May 01 June 2013, Recent Developments in High Energy Physics and LHC, METU NCC, Cyprus
- 01 06 July 2012, Lindau Nobel Laureates Meeting, Lindau, Germany
- June August 2011, Summer school on particle physics, CERN, Geneva, Switzerland
- June 2010, Summer school on nonrelativistic quantum mechanics, Bilkent University, Ankara, Turkey
- June July 2007, Summer Research Program, Koç University, Istanbul, Turkey

Personal interests

- Lifelong aviator, holding a Private Pilot License since 2012
- Amateur radio operator, holding a ham radio license
- Partner dances: Tango and Bachata